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1. INTRODUCTION

During early March 1983 evidence surfaced that suggested the presence

of linear computational stability within the LFM model. The numerical

method used to integrate the model equations has evolved over the years

since the fundamental analysis of Brown and Campana (1978) appeared. In

particular the model now uses fourth-order accurate, finite-difference

approximations and a rather large diffusion coefficient, especially near

the boundaries. In an effort to shed some light on the observed behavior

of the model, I have carried out a linear, computational stability analysis

taking into account the presently used methods.

2. THE BASIC EQUATIONS

The momentum and continuity equations form the basic set for this

analysis. We use the linearized, one-dimensional versions, neglecting rotation.

-- A - - -f (1.a)

_ =~ XC (2.)

the equations take the form.

-Ha~~~~~~ _ _y S_ A by7(3.a)

DI- U> X A <v (3.b)
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The kgdependent variables v and p are assumed to depend upon x via

the functional form eikx with k the wave number. Using this assumption

in eqs. 3,

a=~ -,>A~~~~r '_s~~~~~~ A(4.a)
?/ = _> - f a (4.b)

2.1 SPACE TRUNCATION

To account for the actual use of finite difference approximations

for the derivatives, the analytical value of k should be replaced as follows:

For 2nd order, first derivative,

i( ={AX) IAX (5.a)

For 4th order, first derivative,

-k r[7 Ad-f£- 4) -X; *2/ea X) 333>W(3 5 .b)I-~~~~~~~~~~~~~~_
For 2nd order, second derivative,

+ - 2 go~-X,0x))"3 (5.c)
2.2 PRESSURE GRADIENT AVERAGING

The time-averaging of the pressure gradient in the momentum equation

may be used in conjunction with the 'leap-frog' approximation for time integration.

One simply solves the continuity equation first. The equations take the form:

jo '1' = 28/ S < t(6.a)

C +'e /0 .
=-2 L ' V It . (6.b)

A /
The coefficient oh -- 1- . It is known that with U=K=0 and 0<(<1/4

the allowable time step for use with the system 6 is greater than that allowed

by the usual leap-frog scheme. In the case %=1/4, one finds that the allowable
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time step is a factor of two greater than in the usual leap-frog scheme.

There is however a linear, not exponential, growth permitted for the

temporal, computational mode. Since past experience indicated that such a mode

can lead to non-linear instability, the system of equations was augmented

by use of the Robert-Asselin time filter.

2.3 TIME FILTERED, PRESSURE GRADIENT AVERAGING

Except for our inclusion of the diffusion term and the advection

term the equations to be analyzed below are identical to those studied by

Brown and Campana. The system of equations is

A M -2bt1 4a A / Nt A 2 / (7a)

, i L? (7c)=^~ den ? Em ~~~~(7d)

-i)~~~~~ z~~~~/~~~V I ~~~(7d)

The coefficient A 2/ - 2/ . The value of / used in the LFM is

0.075. Brown and Campana showed that a near optimal choice of 0X follows

from the formula

Before proceeding to the analysis of the system of equations 7 it is

convenient to define / -4- AU A 3 7 _ r -z/ t

ca -=L /z0T
(9)

3. ALGEBRAIC DERIVATION OF STABILITY CRITERION

The equations 7 become with 9,

r -,it A ,"- A 9 ' v (10.1)

A ^+t A en ^ t r ^^fl1 ^ 1 A 'AA]
0- [ea t 2 1 4X +P J (10.2)

A A.

An n-M (10.4)

j z i < +/$ P ( o G4 
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but for convenience in the algebraic elimination of non-time averaged

quantities (those with carats), the equations are written again, raising

n to n+l:
F ? A A Mh v ^ ,

_ p - 2 - (10.5)
74-A''I f A MO 41 M~

= - _ -2:)V- 2 v (10.6)
1 _P A 11 / /V LO(K [ 4(1.6

= /~ p -~t ' /'' +t fe (10.7)

A-AI n r^1-t MI IZ (10.8)
A MiPI

Now we use eqs. 10.2 and 10.6 in eq. 10.8 to replace -V and ir

After collecting terms, one may then use eqs. 10.3, 10.4 and 10.7 to

eliminate all reference to non-time averaged variables. A final collection

of terms yields

f,,r gtOA) 2 (11)

Following an analogous method, we use eqs. 10.1 and 10.5 in eq. 10.7 to

a pM+ I /q _S 2an
replace P and P . After collecting terms, equations

10.3 and 10.4 permit one to eliminate all reference to non-time averaged

variables. The final equation may be expressed as

ts*+t [n (Jt 4) -2 7Ft f e- 2 A/lJ (12)

e. 2. i' a, lv- /b _ -J7 _ o
One now takes the solution in the form

feP Ao/1

A'% ^ f > ~~~(13)

and obtains the determinant of the coefficients of P and V (appearing in

eqs. 11 and 12 after 13 has been introduced). The determinant must vanish and

therefore one has the characteristic polynomial in ~ :

2
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-X# 4,C 3+ A, 0 3 -,.A, (14)

The coefficients c are

cl = ~=J d- ~A t / f ) ~
L A/

In order for the numerical integration to be linearly stable one must have

I~I<1
We have compared the coefficients c with those given by Brown and Campana

Al

by setting Or = (I- C:) , eL = . Using the notation in this note,

the coefficients in eq. 17 of Brown and Campana are:

ci = Cgv~#

c2= qC) ( t i -i 20 i

AA

c3 = 4 (o _ 2p A+2XA) -E- z

c4 = Pj (o -)

The only apparent discrepancy is in the coefficient of 4 @ in the equation

for c3.

For the relations to be identical one must have

A

Since (- - 2 the right hand sid m e m ay be expanded

t cc -- + 2 C1-
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This shows that there is no discrepancy.

When we compare our equation with that in the paper by Schoenstadt

and Williams (1976) we find that their equation (36) which should reduce

to Brown and Campana's eq. (17) (upon setting their S to BfC's D and t to

b) does not do so. Using the notation of this note the coefficients of

Schoenstadt and Williams are,

cl = 4L A -

C2 =

C3 = 4 t E 2ore-21 41 //A

fA_ z

c4 = Go -i)f 

In the coefficient of qb in the formula for c2, there is an additional

-d~ present. The remaining terms all agree with our equations and that

of Brown and Campana; we therefore conclude that our equation is correct.

The additional terms involving / in Schoenstadt and Williams equation (39)

do not agree with our equations either. The reason for these discrepancies

is not certain, but it may be due to Schoenstadt and Williams' use (cf

their eq. 35) of an analytic rather than simple algebraic approach to

determining the role of the Robert-Asselin time filter. We have checked

our algebra and believe it to be correct.

4. RESULTS

We have solved the characteristic equation for a variety of conditions.

The results are tabulated in Table 1 below. In all cases, the pressure

gradient averaging weight WC and the Robert-Asselin time averaging weight

were computed as in the operational model. The values are /A =0.075

and XL= 0.27.
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Most of the computations used the parameters appropriate for the low

latitude boundary zone of the model. There the grid size A X is a minimum

near 120 km, and the diffusion coefficient is a maximum, K- 1.8x106 m2sec-

The operational model uses a 400 sec time step and approximates both

gravity wave and advection terms using 4th order accurate finite-difference

approximations. The diffusion term uses a 2nd order accurate approximation

to the Laplacian (5 point) operator. We are not certain of the appropriate

value for the gravity wave phase velocity c, but we assume that our use

of 330 m sec-1 errs on the side of conservatism.

As shown by entry #1 in the Table, the operational values gave us a

unstable solution. Entry #2 in the table shows that when diffusion is

removed the operational system is stable as long as the wind doesn't

exceed 10 m/sec. Entry #3 repeats the computation without diffusion, but

introduces second-order accurate finite differences. In this case the

solution is stable for all wind speeds tested (up to 70 m/sec).

It appears therefore that two effects: diffusion and the numerical

accuracy of the approximations are both important.

Entries 4, 5 and 6 explore the effect of reducing the time step upon

the operational scheme. Only when the time step is reduced to 300 secs

do we find the computation to be stable for appreciable wind speeds (up to

30 m/sec).

Entry #7 shows the result of using 2nd order finite differences with

the operational value of diffusion and the 400 sec time step. The result

is stable for wind speeds up to 40 m/sec.

If one were to judge by results to this point it appears that second

order differences should be used rather than reducing the time step.

However, we decided to evaluate the effect of only using second-order
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accurate approximations for the gravity wave leaving advection as fourth

order accurate. The rationale for this is based on the assumed meteorological

unimportance of the gravity wave component of the numerical solution.

Entry #8 shows that in the absence of diffusion this approach is successful.

Comparison with entries 2 and 3 is suggested.

When diffusion was added, the allowable wind speed for stability was

cut back to 30 m/sec as shown by entry #9.

We tested this approach by using conditions appropriate for latitude

20°N and found the results to be stable for wind speeds up to 50 m/sec

as shown by entry 10.

In entries #11 and #12, we show that, by reducing the time step by

10% to 360 sec and by using second-order accurate approximations of the

gravity wave terms while retaining fourth order accuracy for advection,

one may obtain a wholely satisfactory linear stability constraint.

Entry # DT VMAX DX K GRAV ADV

1 400 ---- 120 1.8E6 4th 4th
2 400 10 120 0 4th 4th

3 400 70 120 0 2nd 2nd
4 360 ---- 120 1.8E6 4th 4th
5 330 5 120 1.8E6 4th 4th

6 300 35 120 1.8E6 4th 4th
7 400 40 120 1.8E6 2nd 2nd
8 400 70 120 0 2nd 4th
9 400 30 120 1.8E6 2nd 4th

10 400 50 20°N 2.2E5 2nd 4th
11 360 50 120 1.8E6 2nd 4th
12 360 70 20°N 2.2E5 2nd 4th

TABLE:

DT:
VMAX
DX
K
GRAV
ADV

RESULTS AND COMPUTILATIONS

time step sec
maximum wind speed for stability m/sec
grid size km
diffusion coefficient m2/sec
order of accuracy of gravity wave
order of accuracy of advection
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5. CONCLUSION AND RECOMMENDATION

We have found that the operational LFM numerical method is only

marginally stable at low latitudes. The difficulties encountered early

in March 83 were probably related to the violation of the linear stability

criterion.

The precision of the analysis presented here depends in part on the

true phase speed of the external gravity mode. We may have erred on the

side of conservatism by setting C equal to 330 m/sec. In any event there

is good reason to believe that the theoretical results presented here are

in good agreement with our recent experience.

It is recommended that the gravity-wave terms be approximated using

second-order accurate finite difference approximations. We should retain

fourth order accuracy on advective terms at least in the momentum,

thermodynamic and water-vapor conveyance equations.

The case in which the LFM completely failed earlier in March should

be rerun with the proposed change in difference approximations.

To instill even greater confidence that this problem is put behind

us, I'd further recommend that the time step be reduced by 10% to 360 sec.

This reduction can be well afforded on the Cyber 205 and would be reasonable

even on the 360/195's.



10

REFERENCES

Brown, J. A., Jr., and K. A. Campana, 1978: In economical time-differencing

system for numerical weather prediction. MWR, 106:8, pp. 1125-1136.

Schoenstadt, A. L., and R. T. Williams, 1976: The computational stability

properties of the Shuman pressure gradient averaging technique.

J. Comp. Phys., 21, pp. 166-177.


